New Brain Imaging Technique

Alzheimer’s disease (AD) brains have two characteristic findings: senile plaques and neurofibulary tangles. While the complete mechanism of AD is unknown, the plaques– aggregations of beta-amyloid proteins and glial cells — are at the very least diagnostically significant.

The plaques and the tangles eventually cause gross atrophy in particular anatomic regions:

Definitive diagnosis, though, requires an invasive biopsy. As such, histology is usually done postmortem and yields slides like this:

Placques in an AD brain.  Note the big circular globs in the middle and upper part of the picture.

AD plaques. Note the globular structures in the middle and on top.

Atrophy is only obvious in late-stage AD and functional differences are suggestive at best. It’d be great if we could florescently tag proteins/genes in brains like we can everywhere else in the body. Unfortunately, brains are typically off-limits due to the blood-brain barrier (BBB).

Harvard researchers, though, decided to try anyways. They attached a MRI probe to a short DNA sequence that is complemtary to a protein expressed in glial cells (the same kind of cells that aggregate around the plaques in AD are made of) and eyedropped it into rats. They then injured the rats via puncture wound and/or stroke to bypass the BBB and induce glial cell localization. Low and behold, the MRIs effectively reported a biopsy confirmed aggregation of glial cells.

It’d be interesting for them to try it with a beta-amyloid DNA sequence attached to the probe. Their methodology could prove useful in the early detection of AD (and other diseases) provided they find a way to bypass the BBB without injuring people.


1 Response to “New Brain Imaging Technique”

  1. 1 New Brain Imaging Technique : Stroke Trackback on May 6, 2008 at 4:01 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s


%d bloggers like this: